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A b s t r a c t  

A check of recent volumes of Acta Crystallographica 
and Crystal Structure Communications shows that 
about 3% of all recently published crystal structures 
were described with too low symmetry. Three 
categories of error are recognized: (1) both Laue class 
and crystal system are wrong; (2) only the Laue class 
is wrong; (3) Laue class and crystal system are correct, 
but an inversion center is missing. Category (1) cases 
can be most easily diagnosed by calculating t h e  
reduced cell and its Niggli matrix. Category (3) cases 
are most easily recognized during full-matrix least- 
squares refinement from singularities, high correla- 
tions between parameters and poor convergence. The 
omission of an inversion center will not result in a 
singular matrix when all atoms in the centrosymmetric 
cell are in special positions which become general 
positions in the noncentrosymmetric cell. Once the 
refinement is completed structures with a missing 
inversion center can be recognized by unusually high 
e.s.d.'s, especially for the highly correlated par- 
ameters, and by large distortions of observed bond 
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distances and angles from accepted values. Such dis- 
tortions often show up as splitting of the centrosym- 
metrically related atomic positions into positions 
whose average is close to the true centrosymmetric 
positions. A mechanical application of the R-ratio 
test should be avoided; it can easily lead to wrong 
conclusions. Proof of higher symmetry must be 
obtained from the diffraction data. The presence of 
more than one effective formula per asymmetric unit 
should always be reason to check for higher sym- 
metry. Cases in all three categories can be checked 
for the occurrence of higher symmetry by searching 
for regularities in bond lengths and angles or in the 
positional coordinates of the atoms. The most syste- 
matic way for such searches is the simple, but power- 
ful method of topological analysis of crystal struc- 
tures. For six structures which previously had been 
described with too low symmetry higher-symmetry 
descriptions are provided. 

I n t r o d u c t i o n  

In the last several years it was pointed out repeatedly 
that a number of published crystal structure determi- 
nations had been performed with space groups of 
incorrectly low symmetry. Examples have been given 
by Marsh and co-workers [Marsh & Schomaker 
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(1981) for cases from Inorganic Chemistry; Marsh & 
Herbstein (1983) for occurrences in Acta Crystal- 
lographica; and also, among many others, by Baur & 
Tillmanns (1970), and by Jones (1984)]. Schomaker 
& Marsh (1979) recognized two categories: (1) the 
structure has been described with the wrong Laue 
symmetry; (2) the Laue symmetry is correct but an 
inversion center has been omitted. In the second case 
refinement by full-matrix least-squares methods 
results either in singular matrices or in high correla- 
tion coefficients between related parameters. Conver- 
gence is poor and atomic positions can be severely 
misdetermined. These effects do not occur when the 
refinement is based on the wrong Laue class. What 
happens then is that the structure is described by too 
many parameters but is otherwise essentially correct. 

The wrong Laue symmetry may be assigned more 
easily when the reciprocal lattice has not been sur- 
veyed photographically and the investigator or the 
computer programs of an automated single-crystal 
diffractometer fail to examine the crystal symmetry 
properly. Description of a structure in the correct 
Laue class with omission of an inversion center can 
result in deviations of mean and individual bond 
lengths from accepted values. Bond lengths might 
seem to be significantly different in chemically 
equivalent moieties which in reality are related by 
the missing centers of symmetry. Most papers report- 
ing corrections of crystal structures which had been 
determined in wrong space groups do not describe 
the techniques an investigator can use to avoid such 
pitfalls. We wish to remedy this situation by present- 
ing such techniques. In the process we give descrip- 
tions of higher symmetry for six previously published 
crystal structures. 

Reduced  bases  and lat t ice  characters  

Any attempt to avoid assignment of an incorrect Laue 
symmetry should begin with the determination of the 
reduced cell of the lattice. This is an old topic (see 
Seeber, 1831) which was dealt with by Niggli (1928) 
and has been summarized by de Wolff (1983) in Vol. 
A of the new International Tables for Crystallography 
(1983). 

Three vectors a, b, c describing a primitive unit cell 
are called a reduced basis if they define a right-handed 
system and if the parameters of the metric tensor 
(reduced form) 

a . a  b . b  c . c  
(1) 

b . c  c . a  a . b  

satisfy certain requirements leading to the following 
two conditions: 

(a) Of all possible lattice vectors, none is shorter 
than a; of all those not parallel to a, none is shorter 
than b; of all those not lying in the a, b plane none 
is shorter than c. 

(b) The three angles between the basis vectors are 
either all acute (type I cell) or all obtuse (type II cell). 
Condition (a) is essential since it defines the lengths 
of a, b and c uniquely, and limits all three angles to 
values between 60 and 120 °. Condition (b) is a con- 
vention. The reduced form (1), also often referred to 
as a Niggli matrix (see Niggli, 1928), makes it possible 
to assign the given reduced cell to one of 44 different 
lattice characters. The lattice characters allow a much 
finer differentiation between lattice types than is pro- 
vided by the Bravais lattices. Tables of the 44 lattice 
characters have been given by Niggli (1928), Mighell, 
Santoro & Donnay (1969), Mighell & Rodgers (1980) 
and de Wolff (1983), among others. It is important 
to make sure that both the main conditions and the 
special conditions [not listed here, but see Mighell, 
Santoro & Donnay (1969)] for reduction are satisfied. 
Failure to do this caused much discussion in the past. 
A number of computer programs exist which perform 
this operation [for instance REZE by Biedl (1967) 
and NBS*AIDS80 by Mighell, Hubbard & Stalick 
(1981)]. This latter program also assigns the Niggli 
matrix found for a particular cell to one of the 44 
lattice characters by comparing its numerical relation- 
ships with those of the various lattice characters. 
Other methods of finding a higher metric symmetry 
of a lattice exist. Le Page (1982) describes a method 
to search systematically for twofold axes. This 
approach is purely geometrical and has the advantage 
of not depending on the reduced cell, since in some 
cases small differences in lattice constants (of the 
order of magnitude of the experimental error) can 
lead to different reduced cells. The B-matrix 
algorithm (Santoro, Mighell & Rodgers, 1980) has 
been coded for computers (Himes & Mighell, 1982; 
Mugnoli, 1984). This method is completely general 
and consists of testing various cells for rational 
coefficients in the transformation matrices. 

The topic of finding reduced cells and describing 
them uniquely has been confused by the existence of 
various algorithms, definitions and conventions. We 
do not wish to give an historical survey, but are simply 
following the definitions given by Mighell et al. in 
Vol. I of the old International Tables for X-ray Crystal- 
lography (1969) and by de Wolff (1983) in Vol. A of 
the new International Tables for Crystallography 
(1983). It should be kept in mind that the definitions 
given in the first and second editions of Vol. I of the 
old International Tables for X-ray Crystallography 
(1952, 1965) are different from those used currently. 

Inspection of the Niggli matrix of the reduced cell 
helps in identifying eases where both Laue class and 
crystal system are wrong. It cannot help in cases where 
the Laue class is wrong, but the crystal system is 
correct. Herbstein & Marsh (1982) described three 
such cases. They are possible when there are two 
Laue classes within one crystal system, as in the 
tetragonal, trigonal, hexagonal and cubic systems. 
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Topological analysis of crystal structures 

The cases where a structure has been described in 
the wrong Laue class and the wrong crystal system 
can be diagnosed not only by investigating the Niggli 
matrix of the reduced cell, but also by analyzing the 
topology of the crystal structure. Topological analysis 
(Baur, Tillmanns & Hofmeister, 1983) is also useful 
when the Laue class is correct but the presence of an 
inversion center has been overlooked, and when there 
is more than one Laue class in a crystal system. 

Such analysis consists of a study of the topological 
symmetry of the various atomic environments in a 
crystal structure. It can show either that the topology 
of the arrangement does not allow the structure to be 
described in a space group of higher symmetry or 
that the arrangement allows a higher symmetry. In 
the first case the analysis gives a proof that the struc- 
ture is already described by the highest admissible 
symmetry. Such proof was given by Tillmanns, 
Hofmeister & Baur (1983) for Ba2Ti9020 (space group 
P1), where earlier studies had suggested monoclinic 
symmetry. In the second case the diffraction evidence 
must be evaluated in order to ascertain whether or 
not a higher space-group symmetry is actually real- 
ized. The same restriction applies of course to cases 
where a higher Laue symmetry is suggested by the 
metric symmetry of a reduced cell. Topological analy- 
sis can be applied to test for higher symmetries in 
other Laue classes within other crystal systems. 
However, it appears that in such cases use of the 
Niggli matrix leads to an answer more quickly. 

Comparison of observed and empirically derived 
bond lengths 

It is always instructive to compare the results of a 
new crystal structure determination with data avail- 
able from the literature. In practice this means that 
the newly determined bond distances and angles 
should compare well with those found previously for 
similar moieties. Such comparisons are particularly 
called for when one is trying to determine whether 
or not a given structure has an inversion center. 

When studying inorganic compounds with ionic or 
partly ionic bonds (an area of expertise of the present 
authors) we recommend to check whether the mean 
bond lengths in the various coordination polyhedra 
have values close to those obtained by adding the 
appropriate effective ionic radii, tabulated as a func- 
tion of formal ionic charge and of coordination 
number (Shannon, 1976). One can do even better and 
compare the observed individual anion-cation dis- 
tances within coordination polyhedra with those pre- 
dicted from empirical relations which are based on 
the bond-strength differences of various anions in 
these structures. Bond lengths in ionic or partly ionic 
structures can be represented by the equation (Baur, 

1970, 1971): 

d(A-X)ind=[d(A-X)mean+bAp(X)]A,  (2) 

where d(A-X)mean and b are empirically derived 
values for the mean bond lengths and the slopes of 
the dependence of the individual bond lengths d(A-  
X)ina on p(X)  for given pairs of A and X in a given 
coordination. The difference ap(X) between the 
individual p(X)  and the mean p(X)  for the coordina- 
tion polyhedron is: 

Ap(X)=p(X)ind-p(X)mea n. (3) 

Numerical values for d(A-X)mea n and b of equation 
(2) based on regression calculations are given for a 
number of common elements in Baur (1981). The 
predictions of bond distances in inorganic substances 
by the use of equation (2) for tightly bound tetrahe- 
dral groups are good to about +0.01 ~ .  

Statistics of reported and reduced cells 

In order to see how prevalent the use of reduced cells 
is in the literature we searched systematically through 
Vols 10 (1981) and 11 (1982) of Crystal Structure 
Communications and Vols B31 (1975) and C39 (1983) 
of Acta Crystallographica. The computations were 
performed using the program REZE (Biedl, 1967) 
and the program NBS*AIDSSO (Mighell etal., 1981). 
The results for all triclinic cells encountered there are 
shown in Table 1. The definition of Mighell et al. 
(1969) for a reduced cell has been used in only about 
29% of all triclinic cases. In another 42% some other 
definition was used, but the cell vectors reported are 
the three shortest ones possible. In an additional 29% 
of the published triclinic structures, the reduction 
algorithm showed that the true cell had shorter cell 
vectors than originally reported. In four of these 
cases an inspection of the Niggli matrix of the reduced 
cell indicated that the lattice had monoclinic sym- 
metry and was centered. These are the cases where 
we considered it useful to investigate the crystal struc- 
ture itself or the diffraction pattern for signs of higher 
symmetry. 

There are a number of additional cases where the 
reduced basis is close to higher symmetry but with 
deviations larger than the usual experimental errors 
in lattice-constant determination. We have not 
investigated them, but in at least one case where an 
angle differed by as much as 0.3 ° from 90 ° , higher 
symmetry is indicated (Marsh, 1984a), and is entered 
in Table 1. 

The monoclinic cells (Table 2) were not compared 
with their reduced bases because conventionally the 
unique axis is b, and also because the centered cells 
are usually described in their centered and not in 
their primitive setting. In 28% of the studied cases 
the shortest monoclinic cell vectors had not been 
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Table 1. Results of checking the triclinic lattices of  all 
crystal structures published in Acta Crystallographica 
Vol. B31 (1975) (AC, B31), Crystal Structure Com- 
munications Vol. 10 (1981) (CSC, 10), Crystal Struc- 
ture Communications Vol. 11 (1982) (CSC, 11) and 
Acta Crystallographica Vol. C39 (1983) (AC, C39) 

The cells which were reported in reduced form in the original 
papers are subdivided into those reduced according to International 
Tables (1983) (IT) and those reduced to any other convention. 
Those originally reported in not reduced cells are subdivided into 
those where the identification of shorter cell vectors did not lead 
to a higher metric symmetry and those where it did. The latter 
cases all lead to centered cells, all but one of which are monoclinic. 

AC, CSC, CSC, AC, % of  
B31 10 I I  C39 Y. Z 

All cases considered 72 43 67 115 297 100.0 
Reduced after IT 8 18 27 34 87 29.3 
Other definitions 39 13 23 50 125 42.1 
Not reduced 24 12 16 28 80 26.9 
Higher metric 1 0 1 3 5 1-7 

symmetry detected 
Higher overall 1 0 ! 3 5 1-7 

symmetry confirmed 

Table 2. Results of checking monoclinic lattices of 
structures published in Crystal Structure Communica- 
tions Vol. 10 (1981) ( CSC, 10), Crystal Structure Com- 
munications Vol. 11 (1982) (CSC, 11) and Acta Crys- 

tallographica Vol. C39 (1983) (AC, C39) 

In the last case only those cells were considered where the mono- 
clinic angle was >115 ° . We are including here also the two cases 
with/3 < 115 ° [Jaber et al. (1983) and Hailer et al. (1983)] which 
had been identified by Marsh (1983, 1984d). Only those instances 
are considered in which shorter lattice vectors were identified or 
a higher metric symmetry was encountered. The latter cases all 
lead to orthorhombic cells, which in all but one case are centered. 

CSC, CSC, AC, % of  
10 11 C39 Y. Y. 

All cases considered 150 199 29 278 100.0 
Shorter cell vectors 21 36 22 78 28.1 

found 
Higher metric 3 2 3 8 2.9 

symmetry detected 
Higher overall 1 0 3 4 1.4 

symmetry confirmed 

used. In an addi t ional  3% of  the reported monocl in ic  
structures we found metrical ly or thorhombic  cells, 
centered in all but  one case. 

Al though our check of  the literature data may not 
have been completely exhaustive because of  mistakes 
and oversights made  by us, on balance it appears  that 
in about 30% of  all tr iclinic cases the vectors used 
to describe the cell were not the three shortest ones 
possible. In an even larger proport ion of  cases the 
s tandard reduced cell was not determined.  Therefore 
in all these instances it was impossible  to test for the 
occurrence of  higher  metric symmetries by inspect ion 
of  the Niggli  matrix. For about 2% of all these struc- 
tures possible higher  metric symmetries are indicated.  
This of  course is not a proof  that the structures really 
have higher  symmetries,  but it should be taken as 
sufficient reason to have a closer look at them. 

As we shall  show below, all originally tr iclinic cases 
of  higher  metric symmetry  were found to have mono-  
clinic or or thorhombic  crystal structures (five out of  
five). For the originally monocl in ic  cases four out of  
eight of  the structures could be proven to be of  h igher  
symmetry.  Our sample is too small to provide a 
sufficient statistical base, but  it seems reasonable  to 
estimate that about  1 to 2% of all publ i shed  triclinic 
and monocl in ic  structures may have been described 
with too low symmetry.  This estimate is made  s imply 
on the basis of  a systematic search and evaluat ion of  
the metric symmetry  of  the unit cells. In addi t ion we 
have to take into account the cases where an inversion 
center has been omitted. We also assume a s imilar  
error ratio for or thorhombic,  trigonal,  tetragonal,  
hexagonal  and  cubic crystal classes, that is inversion 
centers have to be added,  the metric symmetry  
changed to a different system, or the Laue class 
changed within the same crystal system in s imilar  
proport ions as for triclinic and monocl in ic  crystals. 
Based on the relative numbers  of  these cases as docu- 
mented by Marsh  and co-workers it appears  that the 
number  of  crystal structure descriptions in unneces-  
sarily low symmetry  may conservatively be est imated 
as at least 3% of all publ i shed  crystal structures. 
Depending  on the estimate of how many  structures 
are publ i shed  annual ly ,  this could mean that several 
hundred  incorrectly described structures are pub- 
lished each year. 

The fact that we chose Acta Crystallographica and 
Crystal Structure Communications as a base for our 
search does not imply  that crystal structures of  too 
low symmetry  are not publ i shed  in other periodicals.  
We shall quote a few such cases, encountered by 
chance in other journals .  

Examples of testing of higher metric symmetries 

In this section we will treat chronological ly the cases 
identified in Tables 1 and 2 as having metric sym- 
metries which exceed the originally reported crystal 
symmetries.  Thus,  by definit ion we have not made  
any attempt to identify wrong Laue classes within the 
same crystal system, nor have we tried to look sys- 
tematically for missing inversion centers. 

( a ) Silver trimetaphosphate monohydrate, 
AgaP309.H20 

The crystal structure of  this compound  has been 
described in space group P1, with Z = 2, by Bagieu- 
Beucher, Dur i f  & Guitel  (1975), see Table 3. The cell, 
as reported, is not reduced. The Niggli matr ix as 
calculated from the reduced cell clearly corresponds 
to lattice character  case No. 17 (Mighell  et al., 1969). 
The right angles calculated for the monocl in ic  setting 
deviate from 90 ° by less than one e.s.d. Inasmuch  as 
C2/m (or in a different setting 12/m) is one of  the 
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minimal non-isomorphic supergroups of Pi (Inter- 
national Tables for Crystallography, 1983) space group 
I2/m is the obvious choice for investigating the 
potentially higher symmetry of Ag3P309.H20. A 
direct transformation of the positional coordinates of 
all 16 atoms in the asymmetric unit reveals that five 
of them can be located in positions xOz [(4i)] with 
site symmetry m, one in ½y0 [(4h)] with symmetry 2, 
while the remaining ten can be combined pairwise in 
five general positions [8(j)]. The mean shift necessary 
to change from the triclinic to the monoclinic coordi- 
nates amounts to an average of only one-third of the 
e.s.d.'s of the transformed coordinates derived from 
those reported in Bagieu-Beucher et al. (1975). In no 
instance is the shift larger than one e.s.d. Therefore, 
in this case we can state that well within the reported 
random errors the crystal structure of Ag3P309.H20 
conforms to space-group symmetry I2/m. In retro- 
spect one sees that the original cell constants corre- 
spond to a primitive setting of a centered unit cell 
(a=b, a=fl) .  

Bagieu-Beucher et al. (1975) remark that the ring 
phosphate P309 has a chair configuration and 
possesses a pseudo mirror plane. This clue could also 
have led to the discovery of the I2/m symmetry. 
When we perform a topological analysis of 
Ag3P309.H20 (Table 3) along the lines suggested by 
Baur et al. (1983) it becomes clear that the O-atom 
types B, C and D occur pairwise. Also the O environ- 
ments of atoms P(1) and P(2) are topologically 
equivalent, as are those of atoms Ag(1) and Ag(2). 
When we compare the corresponding interatomic dis- 
tances with each other in detail [for instance around 
Ag(1) and Ag(2)] we see that they are equal within 
2 e.s.d.'s. Thus we get the five pairs of atoms which 
are independent in the description in P1, but are 
symmetrically and topologically equivalent in 12/m. 

The Niggli matrix is also very close to lattice 
character case 16, orthorhombic F, and somewhat 
close to case 15, tetragonal L Although the maximal 
deviations of the angles from 90 ° (0.32 ° for case 16, 
1.1 ° for case 15) are outside the normal range of error, 
similar errors have been reported before (Marsh, 
1984a). The topological analysis, however, assures 
us that higher than monoclinic symmetry does not 
exist here: in space group I2/m all atoms are 
differently coordinated. Therefore, in an orthorhom- 
bic F-centered or a tetragonal/-centered space group 
with a higher multiplicity of the general position all 
atoms would have to occupy special positions. This 
is not possible for P(1, 2) which is tetrahedrally coor- 
dinated by four topologically different O atoms (Table 
3); therefore, it cannot reside in any special position. 

Thus there are three independent ways to arrive at 
the suspicion that Ag3P309.H20 could have a higher 
symmetry: the numerical values of the original cell 
constants, the Niggli matrix of the reduced cell, and 
the topological analysis of the atomic environments 

in the crystal structure. The confirmation of a higher 
symmetry comes in this case from a transformation 
and an analysis of positional coordinates. 

( b ) Bis (benzoylaziridine) dibromozinc (I I), 
Z n B r 2 ( C 9 H 9 N O ) 2  

Faure, Loiseleur, Bartnik, Lesniak & Laurent 
(1981) reported the crystal structure of 
ZnBr2(C9H9NO)2 in space group P21, with Z = 2  
(Table 4). The number of formula units per cell equals 
the number of asymmetric units, but as we shall see 
below the molecule is symmetric within itself. The 

Table 3. Cell constants, transformation and Niggli 
matrices, positional coordinates (x 104) in space group 
I2/m of AgaP309.H20 , together with topological 

analysis 

T h e  n u m b e r s  in  s q u a r e  b r a c k e t s  a r e  t he  c o o r d i n a t e  sh i f t s  ( a v e r a g e d  
w h e n  t w o  a t o m s  a re  i n v o l v e d )  n e e d e d  to  o b t a i n  1 2 / m  s y m m e t r y .  
N u m b e r s  in  p a r e n t h e s e s  a r e  e . s .d . ' s  d e r i v e d  f r o m  t h o s e  r e p o r t e d  
b y  B a g i e u - B e u c h e r  et al. (1975)  in t h e i r  T a b l e  1. 

Cell as reported by Bagieu-Beucher et al. (1975) for structure in P ]  

a = 7-800 (5) A a = 115.15 (5) ° 
b = 7.796 (5) /3 = 115.15 (5) 
c = 9-276 (5) y = 88.93 (5) 

Transformation matrix to reduced cell 

010/100/01 1 

Reduced cell 

a = 7.796 (5) A, a = 114'26 (5) ° 
b =7-800 (5) B = 114.65 (5) 
c = 9.239 (5) y = 91.07 (5) 

Niggli matrix of  reduced cell 

60.78 60.84 85.36 
-29.61 -30-04 -1.14 

This corresponds to case 17, monoclinic I centered 

a . a  a . a  c . c  

-Ib" cl -la" cl - ( a .  a - l b - c l - l a - e l )  

Transformation matrix from reduced cell to monocl in ic / -cen te red  

i 0 i / i  i0 /01 1 

Un i t  cell in monoc l i n i c / - cen te red  setting 

a =9.326 (6) A a =90"01 (5) ° 
b = 10.925 (7) fl = 106-50 (5) 
c = 9"276 (5) 3' = 90"03 (5) 

Direct transformation from original P ]  cell of  Bagieu-Beucher et al. (1975) 
to monoclinic ! cell 

i i i / l i o / o 0 1  

The inverse of  this matrix needed for coordinate transformation of  the 
original parameters to those in the monoclinic setting (monoclinic to 
original) 

Coordinates in space 

,_~_~ . . . .  - 2  ~ - ~ - ~ 0 0 1  

group 12/m (multiplied by 104) 

x y z 

Ag(l, 2) 824411] (1) 170511] (1) 8893[0] (1) 
Ag(3) 5000[0] (1) 3183[-] (1) 0[1] (1) 
P(1, 2) 420811] (3) 132911] (2) 696211] (3) 
P(3) 2051[-] (3) 0[2] (2) 8034[-] (3) 
O(LI2) 4976[-] (7) 0[1] (6) 7062[-] (8) 
O(LI3, L23) 315012] (7) 113112] (6) 8066[2] (8) 
O(E 11, E21) 3275[0] (8) 1574[2] (7) 5399[6] (8) 
O(E12, E22) 5380[4] (8) 2225[3] (6) 774511] (8) 
O(E31) 1651[-] (8) 0[2] (6) 9470[-] (8) 
O(E32) 840[-] (8) 0[1] (6) 6594[-] (8) 
H20 1853[-] (8) 0[2] (6) 2778[-] (8) 
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Table 3 (cont.) 
Topological analysis of  atomic environments in Ag3P3Og.H20 

O-atom environments ( =  O-atom types) 

Number of  
Number of  neighbors 

Label such atoms P Ag[5] Ag[8] CN 

A 1 2 0 0 2 
B 2 2 0 1 3 
C 2 1 1 1 3 
D 2 1 2 1 4 
E 1 1 2 0 3 
F 1 1 0 2 3 
G 1 0 2 0 3 

Cation environments with labels for the O atoms as defined above 

O-atom types 

V(l) IA IB I C  1D 
P(2) IA 1B lC 1D 
P(3) 2B IE 
Ag(l) lC 2D IE 
Ag(2) 1C 2D 1E 
Ag(3) 2B 2C 2D 

IF 

2F 

IG 
IG 

originally reported cell is not reduced. However, the 
reduced cell has almost the same dimensions as the 
reported cell. This can happen when the metric sym- 
metry of the lattice is actually higher than assumed. 
The Niggli matrix clearly points to a centered ortho- 
rhombic cell. Inspection showed the presence of a 
mirror plane; therefore, of the two centered ortho- 
rhombic space groups (C2221 and Cmc21) which had 
to be investigated (because both are minimal non- 
isomorphic supergroups of P21), the latter is the 
correct choice. We chose the A setting (Table 4). 
Three of the atoms are on the mirror plane [Zn, Br(1) 
and Br(2)]; all others can be combined pairwise. The 
shifts in positional coordinates needed to attain 
orthorhombic symmetry are on average one-half an 
e.s.d, for the non-hydrogen atoms. All but two are 
below one e.s.d.; the other two are below two e.s.d.'s. 
Therefore, the pseudo mirror plane mentioned by 
Faure et al. (1981) as passing through the Zn and Br 
atoms is, within the limits of error of the structure 
determination, a real mirror. Neither Crystal Data 
Determinative Tables (1984) nor the Cambridge Data 
Base [Allen et al. (1979) (1982 release)] have pointed 
out that this structure has been described with too 
low symmetry. 

( c) 1-[ (4-Cyclooctylamino-3-pyridyl)sulfonyl]-3- 
ethyIurea hydrogen nitrate, C16H27N403S+.NO3 

This structure has been reported in space group 
P21/c with Z = 4  (Dupont, Lewinski, Stadnicka & 
Delarge, 1981). The Niggli matrix of the reduced cell 
points to lattice character case 40, orthorhombic C 
(Table 5). The molecule itself is asymmetric, and the 
number of molecules in the unit cell does not exceed 
the number of asymmetric units in P21/c. The only 
C-centered minimal non-isomorphic supergroup of 
P21/c is Cmca. The multiplicity of the general posi- 
tion in Cmca is 16, but there are only 8 molecules in 

Table 4. Cell constants, transformation and Niggli 
matrices and positional coordinates (×104) of 
ZnBr2(C9HgNO)2 in space group A21ma as trans- 
formed from the values of Faure et al. (1981); for 

explanations see Table 3 

(a) Unit cells 

a (A) b (A) c (A) a (°) 

Original 
7"781 (3) 10"746 (4) 11 "823 (3) 90 

Reduced 
7.781 (3) 10.746 (4) 11.822 (3) 90 

Orthorhombic A 
10'746 (4) 22"328 (6) 7"781 (3) 90"01 (3) 

(b) Transformation matrices 

Original to reduced 1 0 0 0 1 0 
Original to orthorhombic A 0 1 0 1 0 2 
Orthorhombic A to original 0 0 T 1 0 0 

(c) Niggli matrix of  reduced cell 

60.54 115.48 139.76 
0 -30.27 0 

/3 (0) ~/(°) 

109-22 (3) 90 

109.21 (3) 90 

90 90 

i 0 i  
i 0 0  
0--I, -~ 

Lattice character case 36, orthorhombic C (or A) 

a . a  b . b  e .c  
--8 " a 

0 0 
2 

(d) Coordinates in space group A21ma (multiplied by 104) 
x y z 

Zn 9442[-] (2) 0[0] (-) 17[-] (3) 
Br(1) 9991[-] (2) 0[1] (2) 2904[-] (3) 
Br (2) 1087[-] (2) 0[1] (2) 7972[-] (3) 
N(1, 2) 8250[0] (10) 645[5] (5) 9180130] (20) 
C(1, 10) 8235115] (20) 800110] (15) 7475115] (50) 
C(2, 11) 8465[5] (10) 126813] (10) 8692[3] (30) 
C(3, 12) 7450[0] (20) 170515] (10) 9090110](20) 
O(1, 2) 6445[5] (10) 151010] (5) 9525[5] (20) 
C(4, 13) 7660[20] (20) 2355[0] (5) 8865[20] (20) 
C(5, 18) 8745[5] (10) 2568[3] (10) 8222118] (20) 
C(6, 17) 8875115] (20) 319015] (10) 8035[20] (30) 
C(7, 16) 7940110] (20) 3568[3] (10) 8437118] (30) 
C(8, 15) 6825[5] (20) 3340[5] (10) 9065110] (20) 
C(9, 14) 6685[35] (20) 2735[0] (10) 9270115] (30) 

this C-centered cell, which has twice the volume of 
the primitive monoclinic cell. The maximal non- 
isomorphic subgroups of Cmca are C2221, Cmc2, 
Abm2 and Aba2. There the general position is eight- 
fold, but none of these space groups has inversion 
centers as P21/c does, which means there are no glide 
planes normal to the 21 axes. Consequently in this 
case the metric symmetry is fortuitously close to 
orthorhombic, but the crystal structure itself is not of 
higher symmetry. The structure has already been 
described in the highest possible symmetry. 

( d) Cobalt(II) chloride phosphate, Co2PO4C1 
The crystal structure of Co2PO4CI was determined 

in space group C2/c with Z -- 8 by Nord & Stefanidis 
(1981). The Niggli matrix of the reduced cell points 
to a higher metric symmetry and the possibility of a 
higher crystal symmetry (lattice character case 8, 
Table 6). Indeed, when Nord & Stefanidis (1980) 
were dealing previously with twinned crystals of this 
compound, they could not decide between mono- 
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Table 5. A monoclinic case where the metric symmetry 
points to orthorhombic, but the crystal symmetry 
nevertheless is monoclinic: C16H27NaO3S+.NO3 

(Dupont et al., 1981) 

(a)  Unit cells 

a (A)  b (A)  c (A)  

Original 
18.397 (3) 5.283 (1) 22.893 (3) 
Reduced 
5.283 (1) 18.397 (3) 22.882 (3) 

Orthorhombic C 
18.397 (3) 41.915 (5) 5.283 (1) 

(b) Transformation matrices 

Original to reduced 0 1 0 
Original to orthorhombic C T 0 0 

(c) Niggli matrix of  reduced cell 

27.91 338.45 
-168.94 0 

Lattice character case 40, orthorhombic C 

a b a  b b'b  
0 

2 

(o) /3 (o) y (o) 

90 113"73 (5) 90 

113"66 (5) 90 90 

90 90 90.04(5) 

100 i 0 i  
i 0 i  0 i 0  

523.59 
0 

C ' C  

0 

clinic and orthorhombic symmetries. Even though the 
structure has now been solved and refined in space 
group C2/c the question still remains because of  the 
higher metric symmetry of  the lattice. Topological 
analysis can, with the help of symmetry arguments, 
settle it (Table 6d).  There are four different O-atom 
types present in Co2PO4C1. Atoms C and D are not 
equivalent despite the fact that both have coordina- 
tion number 3, because D coordinates to Co(3) which 
resides in position 4(a) with site symmetry i ,  while 
atom C coordinates to Co(2) [in 4(e),  site symmetry 
2]. Therefore O atom C is a neighbor to its equivalent 
atom in the coordination octahedron around Co(2),  
while D is opposite to its equivalent atom in the 
coordination around Co(3). The cell constants and 
the volumes of the monoclinic and the orthorhombic 
/-centered cells are identical. If Co2PO4C1 were 
orthorhombic the space group would have to be Ibam, 
Ibca or Imma, which are all minimal non-isomorphic 
supergroups of C2/c. There are 8 equivalent positions 
in C2/c and 16 in the orthorhombic space groups. 
The three different Co atoms in space group C2/c 
would have to occupy the same 16-fold general posi- 
tion in an orthorhombic cell. However, this is impos- 
sible because all three are topologically different 
(Table 6d).  Therefore, we would have to consider 
special positions for them. In Ibca all eightfold posi- 
tions have site symmetries 2 and 1, and no fourfold 
positions are present. This is incompatible with the 
topology of Co( l ) ;  therefore Ibca can be ruled out. 
In space groups Imma and Ibam Co(I)  could in 
principle be accommodated in an eightfold position 
with site symmetry m, but all fourfold positions have 
symmetries 222, 2/m or mm2, which cannot be recon- 
ciled with the particular environment around Co(2). 
Thus Co2PO4C1 is correctly described in space group 

Table 6. Cell constants, transformation and Niggli 
matrices and toplogical analysis of Co2PO4C1 ( Nord 
& Stefanidis, 1981) and Fe2POaC1 (Anderson, Rea & 

Kostiner, 1976) 

(a)  Unit cells 
a (A) b (A) c (A) ~ (°) /3 (°) y (°) 

Co2PO4C1 

Original, monoclini¢ C 
13.514 (2) 9" 132 (2) 9.220 (2) 90 132.90 (2) 90 
Reduced 
8.155 (2) 8.155 (2) 8.167 (2) 105.32 (2) 111.21 (2) 111.90 (2) 

Orthorhombic I(?) 
9.220 (2) 9.900 (2) 9.132 (2) 90 90 89.88 (2) 

Monoclini¢ I 
9.900 (2) 9.132 (2) 9.220 (2) 90 90" 12 (2) 90 

Fe2PO4CI 

Original, monoclinic C 
13-677 (1) 9-217 (1) 9.326 (1) 90 132.53 (1) 90 
Reduced 
8.246 (1) 8.246 (1) 8.292 (1) 104.90(I) 111.35 (1) 112.05 (1) 

Orthorhombic I(?) 
9-326 (1) 10.079 (1) 9.217 (1) 90 90 89.54 (1) 

Monoclinic I 
10.079 (1) 9.217 (1) 9.326 (1) 90 90.46 (1) 90 

(b) Transformation matrices 

Original to reduced ~-~ 0 --~-~ 0 -~  ~ T 
Original to orthorhombic 0 0 1 1 0 1 0 1 0 
Original to monoclinic I 1 0 1 0 T 0 0 0 T 

(c) Niggli matrices 
Co2PO4C1: Niggl i  matr ix of reduced cell 

66.50 66.50 66.70 
-17.60 -24-10 -24.81 

Lattice character case 8, orthorhombic I 
a-a a-a a .a  

-Ib" c] - [a .  c] -(la" a l -  Ib-cl-  la" el) 

Fe2PO4CI: Niggl i  matr ix of reduced cell 

68.00 68-00 68.76 
-17.58 -24.89 -25.53 

Lattice character case 17, monoclinic ! 
a . a  a . a  c . c  

-Ib'e[ -la" el -(a" a-lb" cl-la" el) 
(d)  Topological analysis of  atom environments in Co2P04C! (and 
Fe2POaCl) 

O- and CI-atom environments 

Number of neighbors 

Number of  Co(2) Co(3)  
Label such atoms P C o ( l )  in 2 in ] C N  

A 1 1 1 1 1 4 
B 1 1 1 0 0 2 
C 1 1 1 1 0 3 
D 1 1 1 0 1 3 
CI 1 0 2 1 1 4 

Cation environments using the labels of the anions defined above 

Anion atom types 

p A B C D 
Co(l) A B C D 2C1 
Co(2) in 2 2A 2C 2C1 
Co(3) in T 2A 2D 2CI 

C2/c and, as in the previous example, the metric 
symmetry is fortuitously almost orthorhombic. 
Actually Co2PO4C1 is isostructural with Fe2PO4C1 
(Anderson, Rea & Kostiner, 1976) and here the devi- 
ation from the orthorhombic symmetry is more pro- 
nounced: 3' differs by 0.46 ° from the right angle (Table 
6a). 
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( e ) Bis( N 1-isOpropyl- 2-methyl- 1,2-propanediamine )- 
disalicylatocopper( II), [Cu(C7H18N2)2(CTHsO3)2] 

This compound has been described in space group 
P21/c with Z = 2 (Pajunen & Pajunen, 1982). The Cu 
atom is at an inversion center and the whole complex 
is therefore centrosymmetric. This case is very similar 
to (c) and thus another case of fortuitously approach- 
ing a higher metric symmetry.* 

( f )  Bis[ bis( acetone S-methylisothiosemicarbazone )- 
ch lorocoba It ( I I) ] tetrach lorocoba Ita te ( I I), 
[ CoCI(CsHt, N 3 S )2]2[ COC14] 

This structure has been described in P1 with Z = 2 
(Gostojir, Divjakovir, Leovac, Ribfir & Engel, 1982). 
The formula already contains the acetone S-methyl- 
isothiosemicarbazone complex around the Co atom 
twice. The cell constants as reported are reduced, but 
the Niggli matrix apparently had not been calculated, 
because it corresponds to lattice character case 29, 
monoclinic C (Table 7). The monoclinic angles a 
and y are equal to 90 ° within much less than one 
e.s.d. A further clue is provided by the original y 
coordinates of the atoms which are pairwise equal to 
each other for 22 pairs of atoms. This includes all of 
the atoms but Co(3), which is in a special position 
with site symmetry 2 in A2/a.  For the same pairs of 
atoms the z coordinates complement each other to 
0.5000. Since A2/a  is a minimal non-isomorphic 
supergroup of P1 and the twofold axes and the glide 
plane are recognizable in the projection parallel to 
[001] of the triclinic description of Gostoji6 et al. 
(1982), the higher symmetry is appropriate. The shifts 
necessary to obtain A2/a  symmetry are on average 
0.6 of one e.s.d, calculated from the values given by 
the original authors. The shift exceeds one e.s.d, only 
6 times; once it is 1.4 e.s.d. 

Table 7. Cell constants, transformation and Niggli 
matrices and positional coordinates (x 10 4) of 
[CoCI(CsHtlNaS)2]2[CoC14] in space group A2/  a as 
transformed from the values of Gostoji( et al. (1982); 

for explanations see Table 3 

(a)  Unit cells 

a (A) b (A) c (A) ~ (°) /3 (°) y (o) 
Original and reduced 
9.088 (4) 10.106 (5) 24.910 (20) 89.56 (6) 89.04 (9) 63.29 (4) 

Monoclini¢ A 
24.910 (20) 18.055 (9) 9-088 (4) 89-99 (4) 90.96 (9) 89.99 (6) 

(b) Transformation matrices 

Original to monoclinic A 0 0 1 1 2 0 i 0 0 
Monoclinic A to original 0 0 1 0 -~--~ ! 0 0 

(C) Niggli matrix of  reduced cell 

82.59 102.13 620.51 
1.93 3.79 41.28 

Lattice character case 29, monoclinic C (or A) 

a . a  b . b  c . e  

a . c  a . a  a . ¢  
2 2 

(d)  Coordinates in space group A2/a (multiplied by ]04) 

x y 2 

Co(I, 2) 97211] (1) 187110] (0) 4456[2] (2) 
Co(3) 2500[0] (1) 9756[-] (1) 0[2] (2) 
Cl(l, 2) 18610] (1) 147411] (2) 5483[2] (3) 
C1(3, 4) 220411] (2) 541211] (2) 694611] (4) 
C1(5, 6) 323811] (i) 4092[0] (2) 5633[2] (4) 
S(A, D) 944[0] (1) 216710] (2) 9496[3] (3) 
S(B, C) 243511] (1) 218911] (2) 7405[5] (5) 
N(AI, DI) 1111[1] (3) 171111] (5) 2326[6] (9) 
N(A2, D2) 674[3] (3) 281910] (4) 1918113] (10) 
N(A3, D3) 640[4] (3) 287511] (4) 3465[6] (9) 
N(BI, CI) 153211] (3) 2354[7] (5) 5709[7] (10) 
N(B2, C2) 186513] (3) 118014] (5) 6086[7] (10) 
N(B3, C3) 144112] (3) 933[5] (5) 519011] (9) 
C(AI, DI ) 91613] (4) 2201[ 1 ] (6) 1417[ 11 ]( 11 ) 
C(A2, D2) 115112] (5) 121813] (7) 9237[0] (14) 
C(A3, D3) 48611] (4) 3490[2] (6) 4016113] (12) 
C(A4, D4) 344[2] (5) 417310] (7) 312415] (15) 
C(A5, D5) 45811] (5) 3542[3] (7) 5638[4] (14) 
C(BI, CI) 189011] (4) 191310] (6) 6306[0] (12) 
C(B2, C2) 225711] (6) 313012] (7) 7808119] (16) 
C(B3, C3) 138711] (4) 227[3] (6) 4967110] (12) 
C(B4, C4) 175516] (6) 964112] (7) 5593114] (16) 
C(B5, C5) 944[5] (5) 9974[6] (7) 3951120] (14) 

( g ) /x-Oxo-bis[ (1,1,1,5 ,5 ,5-hexafluoro- 2,4-pent ane- 
dionato ) oxo ( 2,4-pentanedionato ) molybdenum ( V ) ], 
[ M o 2 ( C 5 H F 6 0 2 ) 2 ( C 5 H 7 0 2 ) 2 0 3 ]  

The crystal structure of this compound has been 
described by Kamenar, Korpar-(~olig & Penavi6 
(1982) in space group P2z/c with Z =2.  The case is 
analogous to (c) and (e) because here as well the 
structure is monoclinic, while the lattice appears to 
be orthorhombic.* 

* Two tables containing details for this case and for cases (g), 
(i), (j), (k), (l) and (m) have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
42453 (7 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 

( h ) Trineptunium dodecafluoride monohydrate, 
Np3F12.H20 

This structure has been refined in space group P1 
with Z = 2  (Cousson, Abazli, Pages & Gasperin, 
1983). The number of formula units exceeds the num- 
ber of asymmetric units in the cell. The reported unit 
cell is not reduced; reduction and inspection of the 
Niggli matrix clearly leads to character case 10, mono- 
clinic C (Table 8). Inspection of the transformed 
atomic parameters and a topological analysis reveal 
the presence of a mirror plane, and a new refinement 
of the structure in space group Cm (Cousson & Gas- 
perin, 1985) confirmed that Np3F12.H20 has mono- 
clinic symmetry. Actually the structure almost con- 
forms to space group C2/m,  but a refinement in C 2 / m  
gives an R of 0.089, while in Cm an R of 0.045 is 
obtained (Cousson & Gasperin, 1985). 
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Table 8. A case from Acta Crystallographica Vol. C39 
(1983) for which a corrected crystal structure description 
has been published" NpaF12.H20 (Cousson et al., 1983) 

(a)  Unit  cells 

a (A) b (A) c ( ~ )  o, (°) /3 (°) ~, (°) 
Original 
8.455 (8) 8.858 (9) 8.396 (10) 113-83 116.64 58.03 
Reduced 
8.396 (10) 8.405 (9) 8.455 (8) 63.39 63.36 88.55 
Monoclinic I 
9.427 (10) I i-729 (12) 8.455 (8) 90-00 95.63 90.08 

(b) Trans format ion  matrices 

Original to reduced 0 0 1 T 1 0 T 0 0 
Original to monoclinic I 0 1 1 ! l l 1 0 0 

(c) Niggli  matr ix o f  reduced cell 

70.49 70-64 71.49 
31-83 31.83 1.79 

Lattice charac ter  case 10, monoc l in ic  C (or I )  

a . a  a - a  g .c  
b . c  b . c  a . b  

( i) N-Methylacetamide hemihydrochloride, 
C3H7NO.½HC1 

Jaber, Guilhem & Loiseleur (1983) described the 
structure of this compound in space group C2 (Z = 
8); that is with two formula units in the asymmetric 
unit. Marsh (1983) pointed out that the structure 
within its stated errors fits into space group Fdd2. 
The unit cell as reported does not show any signs of 
higher symmetry, but the reduced cell and the Niggli 
matrix point clearly to character case 16, orthorhom- 
bic F. Another clue is given by the z coordinates of 
the corresponding atoms in the two crystallographi- 
cally independent molecules in the C2 description: 
they add up to 0.5000 within +0.0005, thus indicating 
the presence of an additional symmetry element (two- 
fold axis or screw axis, mirror or glide plane) at 
z = 0.25.* 

(j) 8,5'-Anhydro- 8 -hydroxy- 9-fl- D- ribofura nosyl- 
adenine ( 8,5'-O-cyclo-A ) monohydrate, 
CloH11NsO4.H20 

Sugio, Mizuno, Kitamura, Hamada, Ikehara & 
Tomita (1983) determined this structure in space 
group P21 with Z = 4 (twice as many formula units 
as asymmetric units). Marsh (1984b) showed that it 
fits an orthorhombic cell and space group P212121, 
because two additional 21 axes relate the independent 
molecules in P21 to each other. Sugio, Mizuno, 
Kitamura, Hamada, Ikehara & Tomita (1984) 
rerefined the structure successfully in the higher sym- 
metry. The originally not reduced cell in the mono- 
clinic setting does not show obvious signs of being 
orthorhombic, but the reduced cell and the Niggli 
matrix point unequivocally to lattice character case 
32, orthorhombic P. Another clue comes from the x 
coordinates in the monoclinic description: they add 
up for pairs of atoms to 0-500.* 

* See deposition footnote. 

( k ) 2-Amino-3,5-dibromo-N-cyclohexyl-N-methyl- 
benzenemethanamine-salicylic acid (1 : 1), 
C14H2oBr2N2.C7H603 

Shimizu, Nishigaki, Nakai & Osaki (1983) pub- 
lished the structure of this compound in space group 
Pi.  Both Marsh (1984c) and Shimizu, Nishigaki, 
Nakai & Osaki (1984) showed that it could equally 
well be described in C2/c. Marsh (1984c) proved it 
by demonstrating that the triclinic structure coincided 
within the reported uncertainties with the monoclinic 
description. Shimizu et al. (1984) proved it by 
rerefining the structure in the higher symmetry. The 
original unit cell is not reduced, but gives a clue to 
higher symmetry by the near equality of cell constants 
b and c. The Niggli matrix points to lattice character 
case 10. Another indication is provided by the x 
coordinates in the original triclinic description: they 
add up to 0.500.* 

(1) Diamminebis ( dimethylglyoximato ) cobalt (I I I) 
tetracya non ickela te ( I I) hexa hydra te, 
[Co(C4H7N2OE)2(NHa)E]2[Ni(CN)4].6H20 

Solans, Font-Altaba, Bermejo & Alvarez (1983) 
described this compound in space group P1 (Z = 1). 
Marsh (1984a) pointed out that the atomic coordi- 
nates for this structure are consistent within the 
reported e.s.d.'s with space group Immm. An editorial 
note in Marsh's (1984a) paper states that Solans et 
al. (1983) had investigated both P1 and Immm, and 
preferred the former 'according to e.s.d.'s and thermal 
coefficients obtained in both space groups'. The com- 
parison of formula units and asymmetric units is in 
this case not diagnostic because the molecules are in 
the mirror plane in the orthorhombic description. In 
addition two cell angles deviate by 0.18 and 0.30 ° 
from 90 ° . This deviation is larger than for any case 
of suspected higher symmetry which we have seen so 
far. However, the shift necessary to symmetrize the 
structure in Immm is on average only 0.6 of the 
corresponding e.s.d.'s as estimated from the values 
of Solans et al. (1983), while the maximum shift is 
2.1tr. For nine pairs of atoms both the x and the z 
coordinates are equal to each other in the triclinic 
setting. We consider this significant. We agree with 
Marsh (1984a) that the proper description should be 
orthorhombic and the cell constants have most likely 
been mismeasured.* 

( m ) Octahydro- 1,3,5,7-tetranitro- 1,3,5,7-tetrazocine 
( H M X )  and N,N-dimethylformamide ( D M F )  
complex, C4H8N8Os.C3H7NO 

Hailer, Rheingold & Brill (1983) found a second 
HMX-DMF complex crystallizing with Z =  12 in 
space group C2/c,_ while the previously known one 
crystallized in R3c (Cobbledick & Small, 1975). 

* See deposition footnote. 
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Marsh (1984d) pointed out that they are almost cer- 
tainly identical, and should both be described in R3c. 
A check of the reduced cell and the Niggli matrix 
could have avoided this error (Table 8). Several clues 
could have led in this case to further checking. There 
are a number of  near equalities between z coordinates 
of  related atoms among themselves and more impor- 
tantly with certain x coordinates. The number of 
formula units is larger than the number of asymmetric 
units. Also the knowledge that R3c is a minimal 
non-isomorphic supergroup of C2/c, coupled with 
knowing that Z = 12, is significant.* 

* See d e p o s i t i o n  footnote .  

Table 9. Cell constants, transformation and Niggli 
matrices and positional coordinates (×104 ) of 
(NHa)2Ce(PO3)5 in space group Cc as transformed 
from the values of Rzaigui et al. (1983); for explanations 

see Table 3 

(a) Unit cells 

a (A) b (A) c (A) 
Original 
7.241 (5) 13.314 (8) 7.241 (5) 
Reduced 
7.241 (5) 7.241 (5) 13.314 (8) 
Monoclinie C 
8.563 (6) 11.679 (7) 13.314 (8) 

(b) Transformation matrices 

Original to reduced 0 0 1 
Original to monoclinic C 1 0 1 

(c) Niggli Matrix of  reduced cell 
52-43 52.43 
-0.47 -0.59 

Lattice character case 14, monoclinic C 
a'a  a .a  

-Ib" el -Ib" el 

(d) Toplogy of  O-atom environments 

a (0) 

90.35 (5) 

90"28 (5) 

89"96 (5) 

(°) y (°) 

107.50 (5) 90.28 (5) 

90.35 (5) 107.50 (5) 

90-53 (5) 90-00 (5) 

100 010 
101 010 

177.26 
-15"77 

C ' C  

-la. bl 

Number Number of  neighbors 
of  such 

Label atoms P[4] Ce[8] N ( I ) / N ( 2 ) [ 9 + 2 ]  N(3) /N(4) [10]  CN 

A 4 2 0 0 ! 3 
B 2 2 0 0 0 2 
C 10 1 1 1 1 4 
D 4 1 0 I 1 3 
E 4 2 0 2 0 4 
F 4 1 1 1 0 3 
G 2 1 1 0 1 3 

(e) Cation environments using the labels of  the anions defined above 

Anion atom types 
P(1) A B C D 
P(8) A B C D 
P(2) A E 2F 
P(9) A E 2F 
P(3) A 2C E 
V(10) A 2(" E 
V(4) A C D E 
P(6) A C D E 
P(5) B C E 
P(7) B C E 
Ce(l) 5C 2F 
Ce(2) 5C 2F 
N(1) 5C 2D 2E 2F 
N(2) 5C 2D 2E 2F 
N(3) 2A 5C 2D 
N(4) 2A 5C 2D 

Table 9 (cont.) 

( f )  Coordinates in space group Cc (multiplied by 104) 

x y z 

Ce(1, 2) 0[0] (1) -955[151 (1) 0[0] (0) 
P(1, 8) 306611] (3) -762[0] (2) 806611] (1) 
P(2, 9) 3294[3] (3) -120314] (2) 589212](1) 
P(3,10) 668011] (3) -105611] (2) 577811] (1) 
P(4, 6) 795911] (3) -1958[!] (2) 763211] (1) 
P(5, 7) 5782[2] (3) -3920[2] (2) 7809[0] (1) 
N(1, 2) 513015] (8) -2055[10] (6) 73[8] (7) 
N(3, 4) 6713117] (8) 119813] (6) 801315] (7) 
O(LI2, 89) 3177112] (8) -149911] (5) 7050[5] (4) 
O(L15, 78) 2350[5] (8) 394[3] (5) 7659[6] (5) 
O(E11,81) 695411] (8) 361816] (5) 8726[5] (5) 
O(E12, 82) 4643[4] (8) -52015] (6) 8480[2] (5) 
O(L23,910) 494111] (8) -56313] (5) 581712] (5) 
O(E21,92) 2098[9] (8) -363[4] (5) 5582[0] (5) 
O(E22, 91) 3348[2] (8) -233118] (5) 538411] (5) 
O(L34, 610) 717211] (8) -100919] (5) 6923[2] (4) 
O(E31,101) 7623[0] (8) -17715] (6) 5264[9] (5) 
O(E32,102) 6663[4] (8) -2247[6] (6) 5397[2] (5) 
O(L45, 67) 6448[2] (8) -2668[4] (5) 791415] (6) 
O(E41, 61) 8439[0] (8) -136016] (6) 8555[2] (5) 
O(E42, 62) 411514] (8) 2372[2] (6) 7077[3] (5) 
O(E51, 71) 9828[3] (8) 997[9] (6) 6883[7] (5) 
O( E52, 72) 5055[6] (8) -4206[6] (6) 8787[8] (5) 

The following three cases are not from our statis- 
tical sample, but we thought it worthwhile to comment 
on them. 

( n ) Diammonium cerium pentametaphosphate, 
(Nn4)2fe(PO3)5 

Rzaigui, Ariguib, Averbuch-Pouchot & Durif 
(1983) report this compound to crystallize in space 
group P1 with Z = 2. They state that from first inspec- 
tions by film techniques the unit cell seemed to be 
monoclinic or possibly orthorhombic, but that a 
closer inspection of the intensities of the reflexions 
showed that these two possibilities were incorrect and 
that the unit cell is triclinic despite its unusual 
dimensions (Table 9). A cyclic exchange of the lattice 
constants gives the reduced cell in standard setting 
and the Niggli matrix corresponds to character case 
No. 14, monoclinic C. The fight angles in the calcu- 
lated monoclinic cell deviate by less than one e.s.d. 
from 90 ° . The atomic parameters of pairs of  atoms 
transformed from triclinic to monoclinic setting obey 
the symmetry of the mirror plane to better than two 
e.s.d.'s for all atoms except Ce. There is a significant 
difference between the positions of  the mirror plane 
calculated from the Ce-atom parameters (y = 0.0955) 
and from all the other atom pairs ( y = 0 . 0 9 3 6 +  
0.0006). We cannot resolve this discrepancy without 
inspection and possibly refinement of the diffraction 
data. But it cannot be assumed without further proof 
that this structure is really the first evidence for the 
existence of  crystallographically independent infinite 
PO3 chains as thought by Rzaigui et al. (1983). 

(o) Shakhovite, Hg4Sb(OH)303 
Shakhovite has been described as a new mineral 

from mercury deposits at Kelyansk, Buryat ASSR, 
and Kaidarkansk, Kirghiz SSR, by Vasiliev, Lavren- 
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Table 10. Cell constants, transformation and Niggli 
matrices and positional coordinates (x 104) of shak- 
hovite in space group Im as transformed from the values 
of  Palchik et al. (1984); corresponding values reported 

by Tillmanns et al. (1982) are also listed in braces 

( a )  Unit  cells 

a (,~) b (,~) c (/~) ~ (o) /3 (o) 7 (o) 

Original 
4.855 (1) 5.415 (2) 8.249 (2) 106.42 (2) 104.18 (2) 98-75 (2) 
Monoclinie 
4"855 (1) 15"077 (5) 5'415 (2) 89"95 (2) 98-75 (2) 90.00 (2) 

{4"871 (1) 15-098 (3) 5"433 (!) 90 98"86 (2) 90} 

(b)  Trans fo rmat ion  matr ix  

Original to monoclinic I T 0 0 ! 1 2 0 i 0 

(c)  Niggli matr ix  o f  reduced  cell 

23.57 29-32 68.05 
-12.63 -9-81 -4.00 

Lattice charac te r  case 43, monoc l in ic  I 

a . a  b . b  e ' e  
b" b - [ a .  b[ a- a - [ a .  b[ 

-I"" bt 
2 2 

(d )  Coord ina tes  in space  group  lm (×104) 
x y z 

Hg(2, 3) 0[1] (4) 1183[-] (2) 0[3] (4) 
{~g(1) 0 1184.5 (3) o} 
Hg(l, 4) -360511] (4) -780611] (2) -516015] (4) 

{Hg(2) 3607 (2) 7804-2 (4) 5170 (1)} 
Sb -4250[-] (6) 0[46] (3) -4936[-] (6) 

{Sb 4169 (2) 0 4882 (2)} 
0(6) -2240[-] (90) 0[97] (30) -1330[-] (80) 

{O(1) 2220 (30) 0 1360 (20)} 
0(4, 5) -1930[-] (60) -950[55] (25) -5960[25] (60) 

{O(2) 1800 (20) 954 (7) 5900 (20)} 
O(1, 3) -6670[05] (70) -950[55] (30) -3900[40] (65) 

{0(3) 6530 (20) 959 (8) 3870 (20)} 
0(2) -6800[-] (60) 0[50] (25) -8350[-] (60) 

{0(4) 6530 (30) 0 8330 (20)} 

tiev & Palchik (1980). Based on a microprobe analysis 
and powder and single-crystal X-ray work they give 
the chemical formula HgsSb2013 and a triclinic unit 
cell with a = 5.47, b = 4.85, c = 16.5 ~ ,  t~ = 101,/3 = 
75 and y = 8 2  °. An independent investigation of 
chemical composition, unit cell and crystal structure 
of this mineral using a sample from Moschellands- 
berg, Rheinland-Pfalz, Germany, revealed a mono- 
clinic body-centered unit cell (Table 10) and a 
chemical composition of HgaSb(OH)303 (Tillmanns, 
Krupp & Abraham, 1982). With the exception of the 
c axis, which should be 8.25/~ instead of 16.5/~, the 
unit cell given by Vasiliev et al. (1980) corresponds 
to a primitive, though not reduced, setting of the 
monoclinic body-centered cell. Another description 
of the crystal structure has been published recently 
by Palchik, Antipin, Vasiliev, Potekhin & Struchkov 
(1984) without reference to the earlier structure deter- 
mination. The mineral is reported to have triclinic 
symmetry, space group P1 and the chemical composi- 
tion Hg4SbO6. The lattice constants of the triclinic 
cell (Table 10) are close (deviations <0.02 A) to the 
dimensions of the reduced cell calculated from the 
body-centered cell given by Tillmanns et al. (1982) 
and the Niggli matrix corresponds to character case 
43, monoclinic body centered. 

A transformation of coordinates from space group 
P1 to Im is also given in Table 10. The parameter 
shifts needed for achieving monoclinic symmetry are, 
however, mostly larger than the standard deviations, 
up to 15 e.s.d.'s for Sb. Interatomic distances which 
are equivalent in the monoclinic description assume 
rather different values in P1. Thus the distances 
Hg(2)-O(6) and Hg(3)-O(6) in P1 are 2.04 (4) and 
2.28 (4)/~,, while the equivalent Hg(1)-O(1) value 
given by Tillmanns et al. (1982) is 2.16 (1) ~ .  There 
is also an appreciable difference between the trans- 
formed positional parameters and the coordinates 
given by Tillmanns et al. (1982), apart from the fact 
that both structures differ in absolute configuration. 
Refinement in both configurations employing the 
intensity data of Tillmanns et al. (1982) led to R = 
0.049 for the configuration chosen by these authors, 
while the configuration preferred by Palchik et al. 
(1984) gave R -  0.065. A refinement in space group 
11 employing hkl and hkl data showed that the largest 
deviation from monoclinic symmetry was less than 
two e.s.d.'s in the case of atoms O(3a) and O(3b) 
[ = 0(3) in Ira]; for all other atoms the deviations 
were < 1.0 e.s.d. Most physical and chemical proper- 
ties reported by Vasiliev et al. (1980) for their samples 
of shakhovite are identical to those of the sample 
from Moschellandsberg. We believe, therefore, that 
both samples are of the same species and that the 
true space group of shakhovite is Ira. 

(p) Calcium sulfite tetrahydrate, CaSO3.4H20 

Matsuno, Takayanagi, Furuhata, Koishi & Ogura 
(1983, 1984) determined the crystal structure of 
CaSOa.4H20 in space group C2/c  with Z- -  12. The 
combination of C2/c  with twelve formula units per 
cell should always raise suspicion [see (m) above]. 
In this instance lattice character 9 (rhombohedral) 
follows from an inspection of the Niggli matrix (Table 
11). The positional coordinates in the monoclinic 
description display numerous similarities and special 
values. The transformation to rhombohedral reduces 
the number of atoms in the asymmetric unit from 
seventeen to eight. Since one of the sulfite groups was 
described by Matsuno et al. (1983, 1984) as dis- 
ordered, we rerefined the structure with isotropic 
temperature factors using space group R3c after 
appropriate averaging. The resulting R is 0.090 for 
612Fobs, as compared with 0.102 obtained by 
Matsuno et al. (1983). However, even in the rhom- 
bohedral description the disordering of the sulfite 
group around S(2) cannot be avoided. In a recent 
paper Cohen & Zangen (1984) have shown that 
Ca3(SO3)eSO4.12H20 forms solid solutions with 
CaSO3.4H20. Apparently the sulfate group can 
replace completely the disordered sulfite group 
around S(2). Cohen & Zangen (1984) have reported 
cell constants for different amounts of substitution of 
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Table 11. Cell constants, transformation and Niggli 
matrices, positional coordinates (with mean deviation 
from monoclinic setting given in square brackets) and 
temperature factors of  CaSO3.4H20 as refined by us 
from the structure factors of Matsuno et al. (1983) after 

transformation to space group R3c 

(a)  Unit  cells 

a (A) b (A) c (A) ~ (°) /3 (°) 
Original 
19"385 (11) 11"192 (4) 11.449 (10) 90 124-34 (4) 
Reduced 
11"192 (5) 11"192 (5) 11"449 (10) 60"76 (4) 60"76 (4) 
Rhombohedral 
11.192 (5) 11.192 (5) 28.360 (21) 90.00 (4) 90.02 (4) 

(b) Transformat ion  matrices 
11 1 l Original to reduced -~ ~ 0 -~ - i  0 
i1 Original to rhombohedral -~. ~. 0 0 1 0 

(c) Niggli matr ix of  reduced cell 

125"26 125.26 131 '08 
62-59 62.59 62.63 

Lattice character case 9, rhombohedra l  

a ' a  8 . a  c . c  
a . a  a . a  a . a  

T 2 T 
(d)  Coordinates  in R3c and  Ucq (both x 104) 

~, (o) 

90 

60.00 (4) 

120.00 (4) 

001 
103 

X y Z Ueq (A 2) 

Ca(i, 2) 7938121 (2) 0[-] 2500[-] 49 (5) 
S (1) 0[-] 0[-] 172812] (1) 42 (6) 
S(2) 0[-] 0[-] 0[-] 298 (13) 
0(1, 2, 3) 6668[2] (5) 210017] (5) 136714] (2) 73 (11) 
0(8,11,13) 6584[6] (7) 991817] (7) 184212] (2) 327 (17) 
0(9, 10, 12) 65113] (6) 4935[3] (6) 578112] (2) 187 (13) 
0(4) 0[8] 018] 5498[8] (8) 314 (52) 
0(5, 6, 7) 850[21] (20) 1376164] (19) 229[2] (6) 241 (40) 

sulfate for sulfite. Each of these sets of cell constants 
can be transformed with the same precision to the 
rhombohedral setting as the cell constants reported 
by Matsuno et al. (1983) can. Interestingly, Shiino, 
Yasue & Arai (1982) have already described 
CaSO3.4H20 rhombohedrally. 

Examples of higher symmetries by addition of an 
inversion center 

We made no effort to search the literature systemati- 
cally for cases where an inversion center might have 
been omitted in a crystal structure determination. The 
examples discussed below were stumbled upon in the 
reading of the literature and are useful for a discussion 
of the principles involved. 

(q) Diiron(II) diphosphate, Fe2P207 

The crystal structure of Fe2P207 was determined 
by Stefanidis & Nord (1982) in space group P1, with 
Z = I .  Shortly thereafter Hoggins, Swinnea & 
Steinfink (1983) published a structure determination 
of the same compound in a centrosymmetric triclinic 
setting. Stefanidis & Nord chose the noncentrosym- 
metric space group because the statistical N(z)  test 

after Howells, Phillips & Rogers (1950) gave an 
unequivocally acentric result. Hoggins et al. (1983), 
however, report that their data agree closely with a 
centrosymmetric distribution. It is unlikely that 
Fe2P207 exists in two modifications with essentially 
identical cell constants, but one with, the other 
without an inversion center. More likely is that 
Stefandis & Nord have omitted the weak reflections 
[smaller than 2o"(1)/1] from the N(z)  test. Marsh 
(1981) has shown that such deletion of weak reflec- 
tions biases the statistical tests towards acentric distri- 
butions. Hoggins et al. (1983) in their paper took note 
of the work of Stefanidis & Nord (1982) and argued 
for a centrosymmetric structure on the basis of their 
statistical tests, and because of the high correlations 
between related parameters and the nonpositive- 
definite temperature factors encountered when they 
refined the structure in the noncentrosymmetric space 
group. 

We show that the noncentrosymmetric strucure is 
also unlikely because of internal crystal-chemical 
evidence. In the P1 structure the two crystallographi- 
cally independent phosphate groups have widely 
different mean P-O bond distances: 1.516 and 
1.556 A, (Table 12). The mean P-O distance in a large 
number of P207 groups in precisely determined 
crystal structures, however, is close to 1.531 A (Baur, 
1974). There is no reason for the mean distances of 
the two phosphate groups in Fe2P207 to be different 
since the bonding situation for both of them is iden- 
tical; that is their environments are topologically 
equivalent. Moreover, when we calculate the 
individual P-O distances according to equation (2) 
and compare them with the observed values we get 
individual deviations (A) ranging up to 0.044 A, 
while the mean deviation amounts to 0-022 A. Such 
large values for A are unusual (Baur, 1974) and 
exceed the e.s.d.'s of the P-O bond lengths appreci- 
ably. The agreement between the calculated values 
and those from the centrosymmetric refinement is 
much better (mean A of 0.012 A,). In addition a 
comparison of the P-O bond lengths averaged for 
the two independent groups in the P1 refinement with 
the individual bond + lengths of the centrosymmetric 
refinement shows that they are very similar to each 
other. The split P-O values in the two groups in the 
noncentrosymmetric case are an artifact of the non- 
centrosymmetric refinement of a centrosymmetric 
structure. The only exception to this is the P-O(4) 
bond length: 0(4) is in a general position in P1, but 
in a special position in PI :  the angle P-O(4)-P is 
180 ° by symmetry. In the noncentrosymmetric 
description it has been moved arbitrarily out of the 
centrosymmetric position and both P-O(4) distances 
have become longer. One could argue that all the 
effects mentioned here are small. However, they are 
real and should not be neglected in the course of a 
crystal structure determination. 
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Table 12. Observed P-O distances (~)  in Fe2P207 
(as calculated from the coordinates of the original 
authors) in space group P1 (Stefanidis & Nord, 1982) 
and in space group P i  ( Hoggins et al., 1983), compared 
with the calculated values according to the method of 
Baur (1970, 1974); O atoms O(1) and O(7), 0(2) and 
O(6), as well as 0(3) and 0(5) become identical in 

the centrosymmetric description 

P 1 Calculated 
P(I)-O(I) 1.522 (9) 1.522 
P(I)-O(2) 1.540 (10) 1.522 
P(1)-O(3) 1.540 (10) 1.522 
P(I)-O(4) 1"623 (10) 1.579 

Mean 1.556 1.531 

P(2)-O(4) 1.574 (12) 1.579 
P(2)-0(5) 1-480 (11) 1.522 
P(2)-0(6) 1.483 (9) 1.522 
P(2)-0(7) 1.525 (9) 1-522 

Mean 1.516 1.531 

Pi  Average PI 
1"527 (4) 1"524 
1.511 (5) 1.511 
1"516(4) 1"511 
1'554 (1) 1"599 
1"527 1"536 

( r) Dicalcium potassium heptahydrogentetrakis- 
(phosphate) dihydrate, Ca2KHT(PO4)a.2H20 

Recently the crystal structure of Ca2KH7(PO4)a.- 
2H20 was determined both by X-ray and by 
neutron diffraction (Prince, Takagi, Mathew & 
Brown, 1984). The X-ray refinement is reported in 
space group P1. The structure has several hydrogen 
bonds which are apparently across centers of sym- 
metry, but are too long to be symmetrical hydrogen 
bonds with the H atom residing in the central special 
position. In addition the K atom seems to be close 
to, but still clearly out of another special position on 
a center of symmetry. In order to answer the question 
whether the structure is disordered, or truly noncen- 
trosymmetric a neutron diffraction study was under- 
taken: the positions of the H atoms should be more 
clearly visible by this method. The authors refined 
the neutron diffraction data four different ways (Table 
13). They preferred in their discussion model (3), 
because model (4) had one nonpositive-definite 
anisotropic temperature-factor matrix. On the basis 
of Hamilton's (1965) R-ratio test the authors point 
out that each of the successive models shows a highly 
significant improvement in the fit relative to the next 
more restrictive model. Therefore, they consider P1 
to be the correct space group of C a E K H 7 ( P O 4 ) 4 . 2 H 2 0 .  

Just as we could calculate the individual P-O dis- 
tances in Fe2P207 using equation (2), we can calculate 
them in CazKH7(PO4)4.2H20 (Table 14). The P(2) 
phosphate group is not affected by the rearrangement 
of the H atoms in P1 relative to P1; therefore the 
predicted distances around P(2) and P(2') in P1 are 
identical and the same as for P(2) in P1. However, 
the observed individual P(2)-O distances are diverg- 
ing here similarly as in Fe2P2OT, and likewise without 
any reason, because the bonding topologies for all 
three phosphate groups [P(2) and P(2') in P1; P(2) 
in P1] are identical. Moreover, the A values for all 
phosphate groups in the noncentrosymmetric 

Table 13. Summary of refinement of 
Ca2KH7(PO4)4.2H20 (from Prince et al., 1984) 

The temperature factors (TF) were constrained in model (3) to be 
related by a center of  symmetry between those atoms which were 
crystallographically equivalent in P1. 

Number of Number of 
Model observations parameters wR 

(1) P i - K  on center 1381 170 0.070 
(2) P i - K  split 1381 173 0.067 
(3) PI-TF's  constrained 1383 227 0.060 
(4) PI-TF's  unconstrained 1379 323 0.052 

refinement are large (mean A 0.032/~; maximum 
A 0.068/~), while for the centrosymmetric refinement 
they are much smaller (mean A 0.006 A,; maximum 
A 0.013/~; that is less than the mean A in the noncen- 
trosymmetric case). We would argue that by the same 
token by which a model without nonpositive-definite 
temperature factors is preferable over one which 
exhibits them, a model in which bond distances con- 
form with accepted values is preferable to a model 
with strange unexplained deviations from reasonable 
values. The mean P-O bond distances, as well as the 
individual ones show in the P1 refinement the same 
kind of splitting as was observed in Fe2P207 (compare 
Tables 12 and 14); the mean P-O distance observed 
for well determined acidic phosphate groups is 
1.536/~ (Baur, 1974). On crystal-chemical grounds 
the centrosymmetric refinement results are to be pre- 
ferred: the space group of Ca2KH7(PO4)a.2H/O is 
more likely to be P1 than P1. That mearis the hydro- 
gen bonds are really disordered since their ordering 
results in P O 4  groups which do not correctly reflect 
in their bond lengths the ordered bond-strength distri- 
bution. 

Where does this leave the results of Hamilton's 
R-ratio test? It is instructive to reread Hamilton 
(1965) and to realize that twenty years ago the data 
sets were much smaller than today. All the examples 
used in that paper for the application of the R-ratio 
test had degrees of freedom (= number of observa- 
tions minus number of refined parameters) ranging 
from 16 to 527. In most modern single-crystal struc- 
ture determinations several thousand Fobs are used 
and the degrees of freedom usually exceed 1000. The 
higher this number is, the closer we get to the limit 
in which any improvement in the R ratio will be 
judged to be significant by this test. Prince (1982) has 
pointed out that passing a test for significance is a 
necessary, but by no means sufficient condition for 
inferring the need for a model with more parameters. 
A model with more parameters that violates the laws 
of nature is not a better model no matter what the 
results of the significance test are. We must judge the 
soundness of additionally introduced parameters by 
their chemical or physical reasonableness. In a way 
we can call this a happy circumstance, because we 
are thrown back to making sense out of the results 
of our crystal structure determinations. Whenever we 
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Table 14. Observed P-O distances (~,) in 
Ca2KH7(PO4)4.2H20 (Prince et al., 1984) in P1 
(neutron) and Pi  (X-ray), compared with the calcu- 

lated values ( Baur, 1970, 1974) 

Obse rved  
Obse rved  C a l c u l a t e d  Obse rved  Ca lcu l a t ed  average  

for  P1 for  P1 for  P I  for  P l  for  P I  

P(1)-O(11) 1.564 (9) 1.530 1.553 (1) 1.556 1.557 
P(1)-O(12) 1.567 (9) 1.499 1.514 (1) 1.506 1-520 
P(1)-O(13) 1.575 (9) 1.585 1.539 (2) 1.545 1.537 
P(1)-O(14) 1.464 (9) 1.530 1.535 (2) 1.537 1-534 
Mean 1.543 1.536 1.535 1.536 1.537 

P(I')-O(11') 1.549 (9) 1"581 
P(I')-O(12') 1.472 (9) 1.514 
P(I')-O(13') 1.499 (9) 1.505 
P(I')-O(14') 1.604 (9) !.545 
Mean 1.531 !.536 

P(2)-O(21) 1.461 (9) 1.504 1.497 (1) 1.504 1.495 
P(2)-O(22) 1.499 (8) 1.504 1.498 (1) !.504 1-498 
P(2)-O(23) 1.529 (9) 1-568 1.565 (1) 1.568 1.567 
P(2)-O(24) 1.583 (10) 1.568 1.581 (1) 1.568 1-583 
Mean 1-518 1.536 1.535 1.536 1.536 

P(2')-O(21') 1.528 (9) 1-504 
P(2')-O(22') 1.496 (9) 1.504 
P(2')-O(23') 1-606 (9) 1.568 
P(2')-O(24') 1.583 (10) 1.568 
Mean 1.553 1.536 

get unreasonable results, such as nonpositive-definite 
temperature factors or inexplicable bond lengths and 
angles we should have the courage to discard the 
results of an automatic application of the R-ratio test. 

(s) 1,8- Octanediamine dihydrobromide, 
C8H2oN2.2HBr 

The crystal structure of CsHEoN2.2HBr was recently 
described by Brisson & Brisse (1984) in space group 
Pba2 (1305 reflexions considered as observed, R = 
wR =0.037, least-squares refinement in block- 
diagonal approximation). The corresponding cen- 
trosymmetric space group Pbam was also considered, 
but rejected because of Hamilton's R-ratio test: wR 
was found to be 0.047 for 1305 reflexions; that is 
higher than in the noncentrosymmetric case. We were 
intrigued by the fact that o.(z) is in ~ about four 
times as large as o'(x) and o.(y). Therefore we refined 
the structure by full-matrix least squares using Fobs 
(Supplementary Publication No. SUP 39048) in 
several ways: in space groups Pbam and Pba2, with 
unit weights and individual weights derived from 
counting statistics, based on all 1546 Fob~ and on the 
1305 Fobs with I > 1.96o-(1), and finally with either 
isotropic or anisotropic temperature factors for the 
non-hydrogen atoms. We shall confine our discussion 
mostly to the refinements closest to the one performed 
by Brisson & Brisse (1984): 1305 Fobs, anisotropic 
temperature factors for the heavy atoms only and 
individual weights. However, we did not attempt a 
block-diagonal approximation. The refinement in the 
centrosymmetric space group Pbam resulted in an 
R = 0.037; the final parameters are listed in Table 15. 
The refinement in the noncentrosymmetric space 

group Pba2 gave R = 0.032. In our refinements the 
e.s.d.'s of the positional coordinates were consistently 
higher by about 25%, when compared with Brisson 
& Brisse's (1984) results. This is most likely due to 
the fact that block-diagonal refinements are more 
optimistic in their estimate of the random errors than 
full-matrix refinements. The errors in the centrosym- 
metric refinement are isotropic. The C-H and N - H  
distances range in the centrosymmetric refinement 
from 0.58 to 1.27 A, while the angles H - C - H  and 
H - - N - - H  spread from 86 to 117 °. For our noncen- 
trosymmetric refinement the corresponding figures 
are 0.52 to 1.77/~, and 79 to 137 °. However, the most 
telling point is that the noncentrosymmetric 
refinements are rather different from each other and 
from the noncentrosymmetric refinement reported by 
Brisson & Brisse (1984) in the values of the z posi- 
tional coordinates: these differ by amounts of up to 
0-02, which is four times the already anomalously 
large standard deviation in z. An instance in which 
adding or subtracting a few Fobs to the data set, or 
changing the weighting scheme, gives a formally sig- 
nificantly different refinement result means that the 
refinement is not stable. We prefer the centrosym- 
metric description of the crystal structure of 
CsH20N2.2HBr. 

We cannot perform a meaningful R-ratio test 
according to Hamilton (1965) because the data set 
from SUP 39048 is incomplete for space group Pba2: 
it contains only F(hkl) with positive h, k and l, 
whereas for the R-ratio test to be done properly we 
would need the separated Friedel pairs for the 
refinement in Pba2, and the averaged Friedel pairs 
for the centrosymmetric refinement. Strictly speaking 
the available data set is only proper for the centrosym- 
metric refinement; for the noncentrosymmetric 
refinement it corresponds to about one half of the 
needed data because dispersion effects (Br is present) 
make the Friedel pairs inequivalent (International 
Tables for X-ray C~stallography, 1974). 

This case is instructive, because it shows that very 
large correlation coefficients (>0.9) in the least- 
squares refinement do not always occur when switch- 
ing from a centrosymmetric to a noncentrosymmetric 
space group. In the structure of CsH2oN2.2HBr all 
heavy atoms are in special positions on mirror planes 
in Pbam. When the structure is described and refined 
in Pba2 the special positions of Pbam become general 
positions in the lower-symmetry space group. The H 
atoms are in general positions, but do not contribute 
sufficiently to the scattering to give rise to strong 
correlations. The only effect of using Pba2 is visible 
in the correlations between the z coordinates and the 
U(33) thermal parameters: they range from 0.8 to 
0.9, which is small enough not to cause singular 
matrices, but large enough to give convergence prob- 
lems (as demonstrated by the large e.s.d.'s of the z 
coordinates and their sensitivity to weighting schemes 



WERNER H. BAUR AND EKKEHART TILLMANNS 109 

Table 15. Final atomic coordinates for C8H2oN2.2HBr 
in Pbam (×10 5 for Br, x 10 4 for N and C, ×10 3 for 
H), and Ueq (x l0  4 for Br, x l0  3 for N and C) and 

U~o (xlO 2 for H) 

x y z Ueq, Uiso (A 2) 
Br(1) 21721 (3) 20242 (4) 00000 510 (4) 
Br(2) 87510 (3) 6167 (3) 00000 446 (3) 
N(I) 6197 (3) 4035 (3) 5000 48 (3) 
N(2) 2333 (3) -1516 (3) 5000 48 (3) 
C(I) 5431 (3) 3758 (4) 5000 62 (4) 
C(2) 5381 (3) 2815 (4) 5000 62 (4) 
C(3) 4613 (3) 2476 (4) 5000 61 (4) 
C(4) 4578 (4) 1520 (4) 5000 69 (5) 
C(5) 3815 (4) 1157 (5) 5000 66 (4) 
C(6) 3803 (3) 208 (4) 5000 69 (5) 
C(7) 3036 (3) -165 (4) 5000 59 (4) 
C(8) 3052 (4) - 1104 (5) 5000 67 (4) 
H(I) 518 (3) 400 (3) 672 (12) 0 (1) 
H(2) 572 (3) 253 (4) 326 (15) 3 (2) 
H(3) 439 (3) 272 (4) 692 (15) 2 (1) 
U(4) 483 (4) 116 (5) 328 (18) 4 (2) 
n(5) 351 (3) 138 (4) 678 (16) 2 (2) 
H(6) 407 (3) 3 (4) 299 (12) 0 (1) 
H(7) 267 (4) 16 (4) 673 (16) 3 (2) 
H(8) 335 (3) - 127 (4) 339 (14) 2 (2) 
HN(l l )  648 (4) 365 (4) 284 (16) 3 (2) 
HN(12) 622 (4) 440 (4) 500 5 (3) 
HN(21) 202 (2) -140 (3) 318 (12) 0 (1) 
HN(22) 257 (5) -199 (4) 500 9 (3) 

and number of F o b  s used in the refinement). Of course 
the e.s.d.'s of the U(33) parameters are also large. If 
the R-ratio test, which we cannot perform, were to 
indicate a significant improvement in R for the non- 
centrosymmetric refinement, we would still prefer the 
centrosymmetric description of this structure because 
of the correlation and convergence problems in Pba2. 

Clues and checks for higher symmetries 

To achieve the highest possible symmetry for a given 
structure we have to either 

Category (1): change both the Laue class and 
the crystal system; or 

Category (2): change the Laue class, but retain 
the crystal system; or 

Category (3): add a center of symmetry, but retain 
both Laue class and crystal system. 

For all three categories it is true that a too low 
symmetry might be suspected when there is more than 
one formula unit per asymmetric unit. Unfortunately, 
a formula unit is generally not identical to a molecule 
or a standard chemical formula. One molecule can 
effectively be composed of two formula units when 
it is located on a symmetry element. Also there are 
many cases in which we cannot doubt that there is 
more than one formula unit per asymmetric unit and 
the symmetry of the structure is still not too low, 
because the different independent molecules have 
significantly different conformations. 

Once we suspect higher symmetry, we can look for 
additional symmetry elements by checking for near 
equalities in bond lengths and bond angles of unre- 
lated molecules, or look for positional coordinates of 
atoms in general with values close to special numbers 
such as zero, one quarter or the like; or we can inspect 

the coordinates of the various atoms for special 
relationships, such as equalities, constant sums, con- 
stant differences or similar instances. A systematic 
way to search for higher symmetries is the simple, 
but powerful method of topological analysis of crystal 
structures (Baur et al., 1983). 

Cases of category (1) can be diagnosed by calculat- 
ing the reduced base and the Niggli matrix. They are 
the simplest ones to find, because we do not have to 
look at the details of the crystal structure in order to 
recognize them. We have to study only the metric 
symmetry of the lattice. 

Category (2) cases are most difficult to identify 
because no special method is known to us for recog- 
nizing them. We have to use the general methods 
valid for all three categories. 

Category (3) cases are easiest to recognize at the 
time the crystal structure is being determined. During 
full-matrix least-squares refinement structures in 
which inversion centers have been omitted can be 
recognized from singular matrices, high correlations 
between parameters and difficulties in attaining con- 
vergence. The occurrence of either of these can be 
made less obvious by block-matrix refinement, in 
which the related parameters are put into different 
blocks, but this of course does not solve the problem, 
it only hides it. After the fact, once the refinement is 
completed, omitted centers of symmetry make their 
presence known by unusually high e.s.d.'s, especially 
for the highly correlated parameters, and by large 
distortions of observed bond distances and angles 
from accepted values. These effects can be relatively 
subtle, as in the examples reported above, or they 
can be very large as in the case of Zn3(BO3)2, where 
the bond lengths were up to 0.2 A off their accepted 
values in a refinement in Ic, but became quite normal 
when refined subsequently in space group I2 /c  (Baur 
& Tillmanns, 1970). 

When comparing R values of centrosymmetric and 
noncentrosymmetric refinements one should also be 
careful about what is considered a comparable 
refinement. Marsh (1981) has pointed out that it may 
be misleading to compare them when both were 
refined with anisotropic temperature factors, because 
two isotropic atoms in a slightly noncentrosymmetric 
array can closely approximate in their I FI values a 
pair of anisotropic atoms in a centrosymmetric array. 
This is particularly obvious because of the splitting 
effect observed by us. A meaningful comparison could 
then be made between a centrosymmetric refinement 
with anisotropic temperature factors and a noncen- 
trosymmetric refinement with isotropic temperature 
factors. 

Singular matrices are unlikely to be encountered 
when omitting an inversion center in a crystal struc- 
ture in which all atoms, or at least all heavy atoms 
are on special positions, which become general posi- 
tions in the lower-symmetry space group. Difficulties 
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in attaining convergence and/or the occurrence of 
certain classes of parameters with large e.s.d.'s can 
give a clue to this condition. When convergence prob- 
lems are due to the use of an inefficient least-squares 
algorithm a more efficient method can be used and 
constraints can be introduced (see ch. 9 of Prince, 
1982). 

Proof that a structure has been described in too 
low symmetry does not come from the clues discussed 
here, but from evaluating the diffraction evidence 
anew. For cases such as those analyzed above, where 
the indications came from the unit-cell metric, 
confirming evidence consists in showing that the 
structure can be described in a higher symmetry 
within one or two e.s.d.'s of the original determina- 
tion. In this context it is advisable to study carefully 
the subgroup and supergroup relations of the space 
groups in question (see the new International Tables 
for Crystallography, 1983). If the lower symmetry was 
due to a missing inversion center it is best to refine 
the structure again in the higher symmetry. However, 
because of the splitting effect demonstrated above, 
one can get a good approximation of the more highly 
symmetric structure also by averaging the positional 
parameters of related atoms. 

Last but not least it should be remembered that 
even reasonable people can reasonably disagree over 
the correct interpretation of a particular diffraction 
experiment. On purpose we have limited ourselves in 
this discussion to the crystallographic aspects of the 
problem. However, when the diffraction evidence is 
ambiguous, the decision between various possible 
symmetries for a particular crystal structure will come 
from additional information from one or the other 
kind of spectroscopic measurements. 

Recommendations 

It would be preferable if crystal structure descriptions 
of too low symmetry were recognized before publica- 
tion. This could be be achieved if authors of structural 
papers would follow the points listed here: 

(1) explore reciprocal space by photographic 
methods before or while using an automatic diffrac- 
tometer (1, 2); 

(2) if the number of formula units per asymmetric 
unit exceeds one, look for excess symmetry in bond 
lengths, coordinates and topology (1, 2, 3); 

(3) always calculate the reduced cells and inspect 
their Niggli matrices (inspect the Niggli matrix 'not 
only after a preliminary orientation matrix is available 
after a peak search in a computer-controlled diffrac- 
tometer, but also after the final refinement of lattice 
constants and orientation matrix has been made) (1); 

(4) inspect carefully the correlation coefficients 
from the least-squares refinements (3); 

(5) be suspicious of large e.s.d.'s for whole classes 
of parameters (3); 

(6) follow up on deviations of bond lengths and 
angles from commonly accepted values (3); 

(7) perform Hamilton's (1965) R-ratio test on the 
proper data sets with separated Bijvoet pairs when 
choosing between centrosymmetric and noncen- 
trosymmetric space groups in the presence of 
anomalous scatterers (3); 

(8) compare corresponding models with each 
other when applying the R-ratio test; for instance 
realize that a centrosymmetric model with anisotropic 
temperature factors is analogous to a slightly noncen- 
trosymmetric model with isotropic temperature fac- 
tors (3); 

(9) do not accept Hamilton's (1965) R-ratio test 
as proof of lower symmetry if bond lengths and/or 
thermal parameters are suspect (3). 
The numbers in parentheses given above indicate the 
category of symmetry change which can be checked 
for by each of the above listed items. If one or several 
of the above nine items are applicable, the diffraction 
evidence should be checked again for signs of higher 
symmetry. 

Previously we have pointed out that in some cases 
the evidence for lower or higher symmetry could be 
ambiguous. However, we suggest that whenever there 
is reason to consider two or more symmetries for a 
given crystal structure, such fact should be stated in 
the paper, the evidence for the final choice should be 
explicitly presented, and when the case is sufficiently 
ambiguous, the full description in two or more space 
groups should be given in the paper. If the authors 
are not explicit about documenting any of these items 
we would hope that editors and referees will request 
relevant information along these lines from them. 
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